Linux vmi2545633.contaboserver.net 6.1.0-32-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.129-1 (2025-03-06) x86_64
Apache/2.4.62 (Debian)
Server IP : 127.0.0.1 & Your IP : 127.0.0.1
Domains :
Cant Read [ /etc/named.conf ]
User : www-data
Terminal
Auto Root
Create File
Create Folder
Localroot Suggester
Backdoor Destroyer
Readme
/
usr /
local /
lib /
python3.11 /
dist-packages /
sklearn /
Delete
Unzip
Name
Size
Permission
Date
Action
__check_build
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
__pycache__
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
_build_utils
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
_loss
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
cluster
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
compose
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
covariance
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
cross_decomposition
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
datasets
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
decomposition
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
ensemble
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
experimental
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
externals
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
feature_extraction
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
feature_selection
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
frozen
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
gaussian_process
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
impute
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
inspection
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
linear_model
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
manifold
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
metrics
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
mixture
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
model_selection
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
neighbors
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
neural_network
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
preprocessing
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
semi_supervised
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
svm
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
tests
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
tree
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
utils
[ DIR ]
drwxr-xr-x
2025-04-08 17:00
__init__.py
4.53
KB
-rw-r--r--
2025-04-08 17:00
_built_with_meson.py
0
B
-rw-r--r--
2025-04-08 17:00
_config.py
13.25
KB
-rw-r--r--
2025-04-08 17:00
_distributor_init.py
424
B
-rw-r--r--
2025-04-08 17:00
_isotonic.cpython-311-x86_64-linux-gnu.so
318.26
KB
-rwxr-xr-x
2025-04-08 17:00
_isotonic.pyx
3.62
KB
-rw-r--r--
2025-04-08 17:00
_min_dependencies.py
2.77
KB
-rw-r--r--
2025-04-08 17:00
base.py
47.58
KB
-rw-r--r--
2025-04-08 17:00
calibration.py
49.37
KB
-rw-r--r--
2025-04-08 17:00
conftest.py
12.28
KB
-rw-r--r--
2025-04-08 17:00
discriminant_analysis.py
39.54
KB
-rw-r--r--
2025-04-08 17:00
dummy.py
23.86
KB
-rw-r--r--
2025-04-08 17:00
exceptions.py
7.52
KB
-rw-r--r--
2025-04-08 17:00
isotonic.py
16.99
KB
-rw-r--r--
2025-04-08 17:00
kernel_approximation.py
38.76
KB
-rw-r--r--
2025-04-08 17:00
kernel_ridge.py
9
KB
-rw-r--r--
2025-04-08 17:00
meson.build
8.76
KB
-rw-r--r--
2025-04-08 17:00
multiclass.py
43.21
KB
-rw-r--r--
2025-04-08 17:00
multioutput.py
42.64
KB
-rw-r--r--
2025-04-08 17:00
naive_bayes.py
54.6
KB
-rw-r--r--
2025-04-08 17:00
pipeline.py
82.63
KB
-rw-r--r--
2025-04-08 17:00
random_projection.py
27.69
KB
-rw-r--r--
2025-04-08 17:00
Save
Rename
"""Configure global settings and get information about the working environment.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # Machine learning module for Python # ================================== # # sklearn is a Python module integrating classical machine # learning algorithms in the tightly-knit world of scientific Python # packages (numpy, scipy, matplotlib). # # It aims to provide simple and efficient solutions to learning problems # that are accessible to everybody and reusable in various contexts: # machine-learning as a versatile tool for science and engineering. # # See https://scikit-learn.org for complete documentation. import importlib as _importlib import logging import os import random from ._config import config_context, get_config, set_config logger = logging.getLogger(__name__) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y.0 # For first release after an increment in Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.Y.ZaN # Alpha release # X.Y.ZbN # Beta release # X.Y.ZrcN # Release Candidate # X.Y.Z # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = "1.6.1" # On OSX, we can get a runtime error due to multiple OpenMP libraries loaded # simultaneously. This can happen for instance when calling BLAS inside a # prange. Setting the following environment variable allows multiple OpenMP # libraries to be loaded. It should not degrade performances since we manually # take care of potential over-subcription performance issues, in sections of # the code where nested OpenMP loops can happen, by dynamically reconfiguring # the inner OpenMP runtime to temporarily disable it while under the scope of # the outer OpenMP parallel section. os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "True") # Workaround issue discovered in intel-openmp 2019.5: # https://github.com/ContinuumIO/anaconda-issues/issues/11294 os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE") # `_distributor_init` allows distributors to run custom init code. # For instance, for the Windows wheel, this is used to pre-load the # vcomp shared library runtime for OpenMP embedded in the sklearn/.libs # sub-folder. # It is necessary to do this prior to importing show_versions as the # later is linked to the OpenMP runtime to make it possible to introspect # it and importing it first would fail if the OpenMP dll cannot be found. from . import ( # noqa: F401 E402 __check_build, _distributor_init, ) from .base import clone # noqa: E402 from .utils._show_versions import show_versions # noqa: E402 _submodules = [ "calibration", "cluster", "covariance", "cross_decomposition", "datasets", "decomposition", "dummy", "ensemble", "exceptions", "experimental", "externals", "feature_extraction", "feature_selection", "frozen", "gaussian_process", "inspection", "isotonic", "kernel_approximation", "kernel_ridge", "linear_model", "manifold", "metrics", "mixture", "model_selection", "multiclass", "multioutput", "naive_bayes", "neighbors", "neural_network", "pipeline", "preprocessing", "random_projection", "semi_supervised", "svm", "tree", "discriminant_analysis", "impute", "compose", ] __all__ = _submodules + [ # Non-modules: "clone", "get_config", "set_config", "config_context", "show_versions", ] def __dir__(): return __all__ def __getattr__(name): if name in _submodules: return _importlib.import_module(f"sklearn.{name}") else: try: return globals()[name] except KeyError: raise AttributeError(f"Module 'sklearn' has no attribute '{name}'") _BUILT_WITH_MESON = False try: import sklearn._built_with_meson # noqa: F401 _BUILT_WITH_MESON = True except ModuleNotFoundError: pass def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import numpy as np # Check if a random seed exists in the environment, if not create one. _random_seed = os.environ.get("SKLEARN_SEED", None) if _random_seed is None: _random_seed = np.random.uniform() * np.iinfo(np.int32).max _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)